Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Discov Oncol ; 15(1): 99, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568424

RESUMO

It is commonly known that the MAPK pathway is involved in translating environmental inputs, regulating downstream reactions, and maintaining the intrinsic dynamic balance. Numerous essential elements and regulatory processes are included in this pathway, which are essential to its functionality. Among these, MAP3K4, a member of the serine/threonine kinases family, plays vital roles throughout the organism's life cycle, including the regulation of apoptosis and autophagy. Moreover, MAP3K4 can interact with key partners like GADD45, which affects organism's growth and development. Notably, MAP3K4 functions as both a tumor promotor and suppressor, being activated by a variety of factors and triggering diverse downstream pathways that differently influence cancer progression. The aim of this study is to provide a brief overview of physiological functions of MAP3K4 and shed light on its contradictory roles in tumorigenesis.

2.
Parasitol Res ; 123(4): 189, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639821

RESUMO

Toxocara canis is a parasitic zoonose that is distributed worldwide and is one of the two pathogens causing toxocariasis. After infection, it causes serious public health and safety problems, which pose significant veterinary and medical challenges. To better understand the regulatory effects of T. canis infection on the host immune cells, murine macrophages (RAW264.7) were incubated with recombinant T. canis C-type lectin 4 (rTc-CTL-4) protein in vitro. The quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to analyze the nucleotide-binding oligomerization domain-containing protein 1/2 (NOD1/2), receptor-interacting protein 2 (RIP2), nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) on mRNA level and protein expression level in macrophages. Our results indicated that 10 µg/mL rTc-CTL-4 protein could modulate the expression of NOD1, NOD2, and RIP2 at both the transcriptional and translational levels. The protein translation levels of NF-κB, P-p65, p38, and P-p38 in macrophages were also modulated by rTc-CTL-4 protein. Macrophages were co-incubated with rTc-CTL-4 protein after siRNA silencing of NOD1, NOD2, and RIP2. The expression levels of NF-κB, P-p65, p38, and P-p38 were significantly changed compared with the negative control groups (Neg. Ctrl.). Taken together, rTc-CTL-4 protein seemed to act on NOD1/2-RIP2-NF-κB and MAPK signaling pathways in macrophages and might activate MAPK and NF-κB signaling pathways by regulating NOD1, NOD2, and RIP2. The insights from the above studies could contribute to our understanding of immune recognition and regulatory mechanisms of T. canis infection in the host animals.


Assuntos
NF-kappa B , Toxocara canis , Animais , Camundongos , NF-kappa B/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Toxocara canis/metabolismo , Transdução de Sinais/fisiologia , Macrófagos
3.
Sci Total Environ ; 926: 172015, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547973

RESUMO

Parabens are esters of p-hydroxybenzoic acid, which have been used as preservatives and considered safe for nearly a century, until the last two decades when concerns began to be raised about their association with cancers. Knowledge of the mode of action of parabens on the metastatic properties of different cancer cells is still very limited. In the present study, we investigated the effects of methylparaben (MP) and propylparaben (PP) on cell invasion and/or migration in multiple human cancerous and noncancerous cells, including hepatocellular carcinoma cells (HepG2), cervical carcinoma cells (HeLa), breast carcinoma cells (MCF-7), and human placental trophoblasts (HTR-8/SVneo). MP and PP at concentrations in a range of 5-500 µg/L significantly promoted the invasion of four cell lines, with a minimum effective concentration of 5 µg/L. MP and PP up-regulated the expression levels and enzymatic activities of matrix metalloproteinase 2 and 9 (MMP2 and MMP9), as well as altered the expression of the tissue inhibitors of metalloproteinase 1 and 2 (TIMP1 and TIMP2) in four cell lines, suggesting MMPs/TIMPs as potential key events (KEs) for paraben-induced cell invasion. Activation of the p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal protein kinases 1/2 (JNK1/2) signaling pathways was required for MP- and PP-promoted invasion of four cell lines, suggesting MAPK signaling pathways as candidates for KEs in cancer or noncancerous cells response to paraben exposure. This study showed for the first time that the two widely used parabens, MP and PP, promoted invasive capacity of multiple human cells through a common mode of action. This study provides evidence for the establishment of a potential cancer-associated AOP for parabens based on pathway-specific mechanism(s), which contributes towards assessing the health risks of these environmental chemicals.


Assuntos
Rotas de Resultados Adversos , Neoplasias , Humanos , Feminino , Gravidez , Parabenos/toxicidade , Metaloproteinase 2 da Matriz , Placenta , Proteínas Quinases p38 Ativadas por Mitógeno
4.
Mol Nutr Food Res ; : e2300797, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38549456

RESUMO

SCOPE: l-Theanine (l-Thea) is an amino acid which is naturally present in tea leaves. It has been associated with possible health advantages, including obesity prevention, but the underlying molecular mechanisms have not been elucidated. METHODS AND RESULTS: A multiomics approach is utilized to examine the mechanism by which l-Thea exerts its antiobesity effects. This study reveals that l-Thea administration significantly ameliorates high-fat diet (HFD)-induced obesity in rats by improving body weight and hyperlipidemia. l-Thea mitigates HFD-induced inflammation and reverses hepatic and colonic damage, and intestinal barrier. This research verifies that the preventive effect of l-Thea on obesity in rats induced by an HFD with colitis is accomplished by suppressing the phosphorylation of important proteins in the NF-κB/mitogen-activated protein kinase (MAPK) pathways. Metabolome analysis reveals that l-Thea regulates HFD-induced metabolic disorders, specifically through modulation of steroid hormone biosynthesis. Microbiome analysis reveals that l-Thea mitigates HFD-induced dysbiosis by increasing the relative abundance of obesity-associated probiotic bacteria, including Blautia coccoides and Lactobacillus murinus, while simultaneously suppressing the abundance of pathogenic bacteria. CONCLUSIONS: l-Thea alleviates colitis generated by an HFD by restoring the integrity of the intestinal barrier, suppressing inflammation through regulation of MAPK/NF-κB signaling pathways, and enhancing microbial metabolism in colon.

5.
Eur J Pharmacol ; 971: 176488, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458410

RESUMO

OBJECTIVE: Pathological cardiac remodelling, including cardiac hypertrophy and fibrosis, is a key pathological process in the development of heart failure. However, effective therapeutic approaches are limited. The ß-adrenergic receptors are pivotal signalling molecules in regulating cardiac function. G-alpha interacting protein (GAIP)-interacting protein, C-terminus 1 (GIPC1) is a multifunctional scaffold protein that directly binds to the C-terminus of ß1-adrenergic receptor (ß1-adrenergic receptor). However, little is known about its roles in heart function. Therefore, we investigated the role of GIPC1 in cardiac remodelling and its underlying molecular mechanisms. METHODS: Pathological cardiac remodelling in mice was established via intraperitoneal injection of isoprenaline for 14 d or transverse aortic constriction surgery for 8 weeks. Myh6-driving cardiomyocyte-specific GIPC1 conditional knockout (GIPC1 cKO) mice and adeno-associated virus 9 (AAV9)-mediated GIPC1 overexpression mice were used. The effect of GIPC1 on cardiac remodelling was assessed using echocardiographic, histological, and biochemical analyses. RESULTS: GIPC1 expression was consistently reduced in the cardiac remodelling model. GIPC1 cKO mice exhibited spontaneous abnormalities, including cardiac hypertrophy, fibrosis, and systolic dysfunction. In contrast, AAV9-mediated GIPC1 overexpression in the heart attenuated isoproterenol-induced pathological cardiac remodelling in mice. Mechanistically, GIPC1 interacted with the ß1-adrenergic receptor and stabilised its expression by preventing its ubiquitination and degradation, maintaining the balance of ß1-adrenergic receptor/ß2-adrenergic receptor, and inhibiting hyperactivation of the mitogen-activated protein kinase signalling pathway. CONCLUSIONS: These results suggested that GIPC1 plays a cardioprotective role and is a promising therapeutic target for the treatment of cardiac remodelling and heart failure.


Assuntos
Insuficiência Cardíaca , Remodelação Ventricular , Camundongos , Animais , Insuficiência Cardíaca/patologia , Miócitos Cardíacos , Cardiomegalia/patologia , Isoproterenol/efeitos adversos , Camundongos Knockout , Receptores Adrenérgicos beta/metabolismo , Fibrose , Camundongos Endogâmicos C57BL
6.
Aging (Albany NY) ; 15(22): 13452-13470, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38032278

RESUMO

AIMS: The acceleration of osteoarthritis (OA) development by chondrocytes undergoing ferroptosis has been observed. Plumbagin (PLB), known for its potent antioxidant and anti-inflammatory properties, has demonstrated promising potential in the treatment of OA. However, it remains unclear whether PLB can impede the progression of temporomandibular joint osteoarthritis (TMJOA) through the regulation of ferroptosis. The study aims to investigate the impact of ferroptosis on TMJOA and assess the ability of PLB to modulate the inhibitory effects of ferroptosis on TMJOA. MATERIALS AND METHODS: The study utilized an in vivo rat model of unilateral anterior crossbite (UAC)-induced TMJOA and an in vitro study of chondrocytes exposed to H2O2 to create an OA microenvironment. Various experiments including cell viability assessment, quantitative RT-PCR, western blot analysis, histology, and immunofluorescence were conducted to examine the impact of ferroptosis on TMJOA and evaluate the potential of PLB to mitigate the inhibitory effects of ferroptosis on TMJOA. Additionally, RNA-seq and bioinformatics analysis were performed to investigate the underlying mechanism by which PLB regulates ferroptosis in TMJOA. RESULTS: Fer-1 demonstrated its potential in mitigating the advancement of TMJOA through its inhibitory effects on ferroptosis and matrix degradation in chondrocytes, thereby substantiating the role of ferroptosis in the pathogenesis of TMJOA. Furthermore, the observed protective impact of PLB on cartilage implied that PLB can modulate the inhibition of ferroptosis in TMJOA by regulating the MAPK signaling pathways. CONCLUSIONS: PLB alleviates TMJOA progression by suppressing chondrocyte ferroptosis via MAPK pathways, indicating PLB to be a potential therapeutic strategy for TMJOA.


Assuntos
Cartilagem Articular , Ferroptose , Osteoartrite , Ratos , Animais , Condrócitos/metabolismo , Peróxido de Hidrogênio/farmacologia , Cartilagem Articular/metabolismo , Articulação Temporomandibular/metabolismo , Articulação Temporomandibular/patologia , Transdução de Sinais , Osteoartrite/metabolismo
7.
Environ Sci Pollut Res Int ; 30(51): 110579-110589, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37792190

RESUMO

Polystyrene nanoplastics (PS-NPs) have recently been found to be present in human blood and kidney. However, the renal toxicity of PS-NPs and the underlying mechanisms have not been fully elucidated. Here, we found that exposure of PS-NPs induced apoptosis of human renal proximal tubular epithelial cells (HK-2) in a size- and dose-dependent manner as revealed by AnnexinV-FITC assay. In addition, PS-NPs promoted ROS production and caused structure changes of mitochondrial and endoplasmic reticulum. Mechanistically, transcriptional sequencing indicated the involvement of MAPK pathway in apoptosis, which was further confirmed by the upregulation of p-p38, p-ERK, CHOP, BAX, cytochrome C, and caspase 3 expression. This study clarified the molecular mechanism underlying PS-NP-induced apoptosis in HK-2 cells and contributed to our risk estimation of PS-NPs in human kidney.


Assuntos
Nanopartículas , Poliestirenos , Humanos , Poliestirenos/metabolismo , Microplásticos , Túbulos Renais Proximais/metabolismo , Linhagem Celular , Estresse Oxidativo , Sistema de Sinalização das MAP Quinases , Células Epiteliais , Apoptose
8.
Biochem Biophys Res Commun ; 682: 223-243, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37826946

RESUMO

Skeletal muscle myogenesis represents one of the most intensively and extensively examined systems of cell differentiation, tissue formation, and regeneration. Muscle regeneration provides an in vivo model system of postnatal myogenesis. It comprises multiple steps including muscle stem cell (or satellite cell) quiescence, activation, migration, myogenic determination, myoblast proliferation, myocyte differentiation, myofiber maturation, and hypertrophy. A variety of extracellular signaling and subsequent intracellular signal transduction pathways or networks govern the individual steps of postnatal myogenesis. Among them, MAPK pathways (the ERK, JNK, p38 MAPK, and ERK5 pathways) and PI3K-Akt signaling regulate multiple steps of myogenesis. Ca2+, cytokine, and Wnt signaling also participate in several myogenesis steps. These signaling pathways often control cell cycle regulatory proteins or the muscle-specific MyoD family and the MEF2 family of transcription factors. This article comprehensively reviews molecular mechanisms of the individual steps of postnatal skeletal muscle myogenesis by focusing on signal transduction pathways or networks. Nevertheless, no or only a partial signaling molecules or pathways have been identified in some responses during myogenesis. The elucidation of these unidentified signaling molecules and pathways leads to an extensive understanding of the molecular mechanisms of myogenesis.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Diferenciação Celular/fisiologia , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo
9.
Biomed Pharmacother ; 165: 115231, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37516022

RESUMO

Male infertility is a global concern, with a noticeable increase in the decline of spermatogenesis and sperm quality. However, there are limited clinically effective treatments available. This study aimed to investigate the potential effectiveness of puerarin in treating male infertility, which leads to gonadal changes. The results obtained from various analyses such as CASA, immunofluorescence, DIFF-Quick, hematoxylin and eosin (H&E), and periodic acid-Schiff (PAS) staining demonstrated that puerarin supplementation significantly alleviated the busulfan-induced reduction in spermatogenesis and sperm quality in both young and adult mice. Furthermore, puerarin exhibited a marked improvement in the damage caused by busulfan to the architecture of seminiferous tubules, causal epididymis, blood-testicular barrier (BTB), as well as spermatogonia and Sertoli cells. Similarly, puerarin significantly reduced the levels of total antioxidant capacity (T-AOC), malondialdehyde (MDA), and caspase-3 in the testes of busulfan-induced mice, as determined by microplate reader analysis. Additionally, RNA-seq data, RT-qPCR, and western blotting revealed that puerarin restored the abnormal gene expressions induced by busulfan to nearly healthy levels. Notably, puerarin significantly reversed the impact of busulfan on the expression of marker genes involved in spermatogenesis and oxidative stress. Moreover, puerarin suppressed the phosphorylation of p38, ERK1/2, and JNK in the testes, as observed through testicular analysis. Consequently, this study concludes that puerarin may serve as a potential alternative for treating busulfan-induced damage to male fertility by inactivating the testicular MAPK pathways. These findings may pave the way for the use of puerarin in addressing chemotherapy- or other factors-induced male infertility in humans.


Assuntos
Bussulfano , Infertilidade Masculina , Humanos , Masculino , Animais , Camundongos , Bussulfano/toxicidade , Sêmen , Espermatogênese , Testículo , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/tratamento farmacológico , Infertilidade Masculina/metabolismo
10.
Fungal Genet Biol ; 168: 103825, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460083

RESUMO

Ras guanine nucleotide exchange factors (RasGEFs) can trigger Ras GTPase activities and play important roles in controlling various cellular processes in eukaryotes. Recently, it has been exhibited that RasGEF Cdc25 regulates morphological differentiation and pathogenicity in several plant pathogenic fungi. However, the role of RasGEFs in Magnaporthe oryzae is largely unknown. In this study, we identified and functionally characterized a RasGEF gene MoCDC25 in M. oryzae, which is orthologous to Saccharomyces cerevisiae CDC25. Targeted gene deletion mutants (ΔMocdc25) were completely nonpathogenic and were severely impaired in hyphal growth, conidiation and appressorium formation. The mutants exhibited highly sensitive response to osmotic, cell wall integrity or oxidative stresses. MoCdc25 physically interacts with the MAPK scaffold Mst50 and the putative Cdc42GEF MoScd1 in yeast two-hybrid assays. Moreover, we found that MoCdc25 was involved in regulating the phosphorylation of the MAP kinases (Pmk1, Mps1, and Osm1). In addition, the intracellular cAMP content in hyphae of the ΔMocdc25 mutants was significantly reduced compared to the parent strain Ku80 and the defect of appressorium formation of the mutants could be partially restored by the supplement of exogenous cAMP. Taken together, we conclude that the RasGEF MoCdc25 regulates vegetative growth, conidiation, appressorium formation and pathogenicity via MAPK and cAMP response pathways in M. oryzae.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores ras de Troca de Nucleotídeo Guanina/genética , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo , Magnaporthe/genética , Ascomicetos/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Esporos Fúngicos , Regulação Fúngica da Expressão Gênica
11.
Allergol Immunopathol (Madr) ; 51(4): 46-54, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37422779

RESUMO

BACKGROUND: Sepsis is a systemic organ dysfunction caused by infection, and the most affected organ is the lungs. Rosavin, a traditional Tibetan medicine, exerts an impressive anti--inflammatory effect. However, its effects on sepsis-related lung damage have not been investigated. PURPOSE: This study aimed to investigate the effects of Rosavin on cecal ligation and puncture (CLP)-induced lung injury. METHODS: The sepsis mouse model was established by CLP, and the mice were pretreated with Rosavin to explore whether it contributed to the alleviation of lung injury. Hematoxylin-eosin (H&E) stain and lung injury score were used to assess the severity of lung injury. The bronchoalveolar lavage fluid (BALF) inflammatory mediators (tumor necrosis factor-α [TNF-α], interleukin-6 [IL-6], IL-1ß, and IL-17A) were detected by ELISA. The number of neutrophils in BALF was detected using flow cytometry. The immunofluorescence assay was used to detect histone and myeloperoxidase (MPO) in lung tissues. Then, the western blot was performed to detect the expression of mitogen-activated protein kinase (MAPK) pathways (extracellular regulated kinase [ERK], p-ERK, p38, p-p38, Jun N-terminal kinase 1/2 [JNK1/2], and p-JNK1/2) in lung tissues. RESULTS: We found that Rosavin significantly attenuated sepsis-induced lung injury. Specifically, Rosavin significantly inhibited inflammation response by decreasing the secretion of inflammatory mediators. The level of neutrophil extracellular traps (NETs) and MPO activity in CLP were decreased after administration with Rosavin. Moreover, the western blot showed that Rosavin could suppress NETs formation by inhibiting the MAPK/ERK/p38/JNK signaling pathway. CONCLUSION: These findings demonstrated that Rosavin inhibited NETs formation to attenuate sepsis-induced lung injury, and the inhibitory effect may be exerted via deregulation of the MAPK pathways.


Assuntos
Armadilhas Extracelulares , Lesão Pulmonar , Sepse , Camundongos , Animais , Proteínas Quinases Ativadas por Mitógeno , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/patologia , Armadilhas Extracelulares/metabolismo , Pulmão/patologia , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Mediadores da Inflamação
12.
Mol Immunol ; 160: 133-149, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429064

RESUMO

Jing-Fang powder ethyl acetate extract (JFEE) and its isolated C (JFEE-C) possess favorable anti-inflammatory and anti-allergic properties; however, their inhibitory effects on T cell activity remain unknown. In vitro, Jurkat T cells and primary mouse CD4+ T cells were used to explore the regulatory effects of JFEE and JFEE-C as well as their potential mechanisms on activated T cells. Furthermore, T cell-mediated atopic dermatitis (AD) mouse model was established to confirm these inhibitory effects in vivo. The results showed that JFEE and JFEE-C inhibited T cell activation by suppressing the production of interleukin-2 (IL-2) and interferon-gamma (IFN-γ) without showing cytotoxicity. Flow cytometry showed the inhibitory effects of JFEE and JFEE-C on the activation-induced proliferation and apoptosis of T cells. Pretreatment with JFEE and JFEE-C also decreased the expression levels of several surface molecules, including CD69, CD25, and CD40L. Moreover, it was confirmed that JFEE and JFEE-C inhibited T cell activation by downregulating the TGF-ß-activated kinase 1 (TAK1)/nuclear kappa-light-chain-enhancer of activated B cells (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathways. The combination of these extracts with C25-140 intensified the inhibitory effects on IL-2 production and p65 phosphorylation. The oral administration of JFEE and JFEE-C notably weakened AD manifestations, including the infiltration of mast cells and CD4+ cells, epidermis and dermis thicknesses, serum levels of immunoglobulin E (IgE) and thymic stromal lymphopoietin (TSLP), and gene expression levels of T helper (Th) cells-related cytokines in vivo. The underlying mechanisms of the inhibitory effects of JFEE and JFEE-C on AD were related to attenuating T cell activity through NF-κB/MAPK pathways. In conclusion, this study suggested that JFEE and JFEE-C exhibited anti-atopic efficacy by attenuating T cell activity and might possess a curative potential for T cell-mediated diseases.


Assuntos
Dermatite Atópica , Animais , Camundongos , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/induzido quimicamente , Interleucina-2 , Pós/efeitos adversos , Pós/metabolismo , NF-kappa B/metabolismo , Citocinas/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Camundongos Endogâmicos BALB C , Extratos Vegetais/farmacologia
13.
Front Oncol ; 13: 1166444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469397

RESUMO

Introduction: Colorectal cancer (CRC) is currently the third most common cancer in the world, and its prevalence and mortality rate continue to increase. Methods: Based on an analysis of The Cancer Genome Atlas database, Tumor Immune Estimation Resource and Gene Expression Profiling Interactive Analysis, we explored the expression of CPNE7 in tumors. Immunohistochemistry and quantitative polymerase chain reaction analysis the expression of CPNE7 in colorectal cancer. Our study explored how CPNE7 promotes CRC cell proliferation and migration in vitro and in vivo. Transcriptome sequencing and Co-IP assay explored the underlying mechinaism of CPNE7 founction. Results: We found the CPNE7 was overexpressed in CRC by database and IHC. CPNE7 promoted CRC cells proliferstion and migration in vitro and in vivo. Comparing and analyzing transcriptome sequencing between exogenous up-/downregulated CPNE7 CRC cells and the controls, we found that CPNE7 activates mitogen-activated protein kinase (MAPK) signaling pathway stimulating cancer cell proliferation. Coimmunoprecipitation experiments revealed an interaction between CPNE7 and pyruvate kinase muscle protein (PKM2). We also found the activity of MAPK signaling is regulated by exogenous CPNE7 expression. Discussion: These results imply that CPNE7 may promote the progression of CRC by interacting with PKM2 and initiating the MAPK signaling pathway.

14.
Metab Brain Dis ; 38(7): 2269-2280, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37347426

RESUMO

The clinical efficacy of haloperidol in the treatment of psychosis has been limited by its tendency to cause parkinsonian-like motor disturbances such as bradykinesia, muscle rigidity and postural instability. Oxidative stress-evoked neuroinflammation has been implicated as the key neuropathological mechanism by which haloperidol induces loss of dopaminergic neurons and motor dysfunctions. This study was therefore designed to evaluate the effect of Jobelyn® (JB), an antioxidant supplement, on haloperidol-induced motor dysfunctions and underlying molecular mechanisms in male Swiss mice. The animals were distributed into 5 groups (n = 8), and treated orally with distilled water (control), haloperidol (1 mg/kg) alone or in combination with each dose of JB (10, 20 and 40 mg/kg), daily for 14 days. Thereafter, changes in motor functions were evaluated on day 14. Brain biomarkers of oxidative stress, proinflammatory cytokines (tumor necrosis factor-alpha and interleukin-6), cAMP response-element binding protein (CREB), mitogen-activated protein kinase (MAPK) and histomorphological changes were also investigated. Haloperidol induces postural instability, catalepsy and impaired locomotor activity, which were ameliorated by JB. Jobelyn® attenuated haloperidol-induced elevated brain levels of MDA, nitrite, proinflammatory cytokines and also boosted neuronal antioxidant profiles (GSH and catalase) of mice. It also restored the deregulated brain activities of CREB and MAPK, and reduced the histomorphological distortions as well as loss of viable neuronal cells in the striatum and prefrontal cortex of haloperidol-treated mice. These findings suggest possible benefits of JB as adjunctive remedy in mitigating parkinsonian-like adverse effects of haloperidol through modulation of CREB/MAPK activities and oxidative/inflammatory pathways.


Assuntos
Antioxidantes , Haloperidol , Animais , Masculino , Camundongos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citocinas , Haloperidol/farmacologia , Proteínas Quinases Ativadas por Mitógeno
15.
J Nat Med ; 77(4): 721-734, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37353674

RESUMO

This study investigated the protective effect of lobetyolin (LBT), a Q-marker isolated from the roots of Platycodon grandiflorum (Radix Platycodi), against cisplatin-induced cytotoxicity in human embryonic kidney (HEK293) cells. Results showed that LBT at 20 µM significantly prevented cisplatin-induced cytotoxicity by improving the viability of HEK293 cells, decreasing levels of MDA, and decreasing GSH content triggered by cisplatin. It also suppressed reactive oxygen species (ROS) levels. Molecular docking analysis revealed a strong binding affinity between LBT and the NF-κB protein, with a docking fraction of - 6.5 kcal/mol. These results provide compelling evidence suggesting a potential link between the visualization analysis of LBT and its protective mechanism, specifically implicating the NF-κB signaling pathway. LBT also reduced the expression level of tumor necrosis factor-alpha (TNF-α), phosphorylation NF-κB and IκBα in HEK293 cells which were increased by cisplatin exposure, leading to inhibition of inflammation. Furthermore, western blotting showed that LBT antagonized the up-regulation of Bax, cleaved caspase 3, 8, and 9 expression and inhibited the MAPK signaling pathway by down-regulating phosphorylation JNK, ERK, and p38, partially ameliorating cisplatin-induced cytotoxicity in HEK293 cells. Therefore, these results indicate that LBT has potentially protected renal function by inhibiting inflammation and apoptosis.


Assuntos
Cisplatino , NF-kappa B , Humanos , Cisplatino/toxicidade , Células HEK293 , NF-kappa B/metabolismo , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa/metabolismo , Apoptose , Inflamação
16.
Allergol Immunopathol (Madr) ; 51(3): 135-142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37169571

RESUMO

PURPOSE: To investigate the role of neferine in ovalbumin (OVA)-induced asthma, and to reveal the possible mechanism. METHODS: In OVA-induced asthmatic mice, enzyme-linked-immunosorbent serologic assay was performed to evaluate the level of interleukin (IL)-4, IL-5, IL-13, immunoglobulin E (IgE) in serum and tumor necrosis factor-α (TNF-α), IL-6, IL-1ß, and monocyte chemoattractant protein-1 (MCP-1) in bronchoalveolar lavage fluid (BALF). Eosinophil, neutrophil, and lymphocyte counts in BALF were calculated to assess inflammation. The pulmonary function was measured by airway resistance, peak expiratory flow (PEF) and forced expiratory volume/forced vital capacity (FEV0.4/FVC) ratio, and respiratory rate. Hematoxylin and eosin staining and Masson staining were used to evaluate lung injury. Further, Western blot analysis was conducted to detect phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 of mitogen-activated protein kinase (MAPK) signaling pathways. RESULTS: Neferine, 20 mg/kg or 40 mg/kg, could significantly decrease the levels of IL-4, IL-5, IL-13, and IgE in OVA-induced serum, and that of TNF-α, IL-6, IL-1ß, and MCP-1 in OVA-induced BALF. Moreover, neferine could significantly decline eosinophil, neutrophil, and lymphocyte counts in BALF. Neferine contributed to improve OVA-induced airway resistance, promoted the value of PEF and FEV0.4/FVC ratio, and recovered the respiratory rate. It also reduced mucus secretion, distribution of inflammatory and goblet cells around bronchi, and attenuated collagen deposition in lung tissues. Furthermore, neferine reduced the phosphorylation of p38, JNK, and ERK to inhibit MAPK signaling pathways. CONCLUSION: Neferine relieves asthma-induced inflammatory reaction, airway resistance, and lung injury by inhibiting MAPK signaling pathways. This could serve neferine as a novel therapeutic candidate for treating asthma.


Assuntos
Asma , Lesão Pulmonar , Camundongos , Animais , Ovalbumina , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-13/metabolismo , Interleucina-5/metabolismo , Interleucina-6/metabolismo , Pulmão , Sistema de Sinalização das MAP Quinases , Inflamação , Líquido da Lavagem Broncoalveolar , Imunoglobulina E/metabolismo , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
17.
Biomedicines ; 11(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37238962

RESUMO

In recent years, magnesium hydroxide has been widely studied due to its bioactivity and biocompatibility. The bactericidal effects of magnesium hydroxide nanoparticles on oral bacteria have also been reported. Therefore, in this study, we investigated the biological effects of magnesium hydroxide nanoparticles on inflammatory responses induced by periodontopathic bacteria. Macrophage-like cells, namely J774.1 cells, were treated with LPS derived from Aggregatibacter actinomycetemcomitans and two different sizes of magnesium hydroxide nanoparticles (NM80/NM300) to evaluate their effects on the inflammatory response. Statistical analysis was performed using an unresponsive Student's t-test or one-way ANOVA followed by Tukey's post hoc test. NM80 and NM300 inhibited the expression and secretion of IL-1ß induced by LPS. Furthermore, IL-1ß inhibition by NM80 was dependent on the downregulation of PI3K/Akt-mediated NF-κB activation and the phosphorylation of MAPK molecules such as JNK, ERK1/2, and p38 MAPK. By contrast, only the deactivation of the ERK1/2-mediated signaling cascade is involved in IL-1ß suppression by NM300. Although the molecular mechanism involved varied with size, these results suggest that magnesium hydroxide nanoparticles have an anti-inflammatory effect against the etiologic factors of periodontopathic bacteria. These properties of magnesium hydroxide nanoparticles can be applied to dental materials.

18.
Front Immunol ; 14: 1117638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251401

RESUMO

Inflammation is thought to be a key cause of many chronic diseases and cancer. However, current therapeutic agents to control inflammation have limited long-term use potential due to various side-effects. This study aimed to examine the preventive effects of norbergenin, a constituent of traditional anti-inflammatory recipes, on LPS-induced proinflammatory signaling in macrophages and elucidate the underlying mechanisms by integrative metabolomics and shotgun label-free quantitative proteomics platforms. Using high-resolution mass spectrometry, we identified and quantified nearly 3000 proteins across all samples in each dataset. To interpret these datasets, we exploited the differentially expressed proteins and conducted statistical analyses. Accordingly, we found that LPS-induced production of NO, IL1ß, TNFα, IL6 and iNOS in macrophages was alleviated by norbergenin via suppressed activation of TLR2 mediated NFκB, MAPKs and STAT3 signaling pathways. In addition, norbergenin was capable of overcoming LPS-triggered metabolic reprogramming in macrophages and restrained the facilitated glycolysis, promoted OXPHOS, and restored the aberrant metabolites within the TCA cycle. This is linked to its modulation of metabolic enzymes to support its anti-inflammatory activity. Thus, our results uncover that norbergenin regulates inflammatory signaling cascades and metabolic reprogramming in LPS stimulated macrophages to exert its anti-inflammatory potential.


Assuntos
Anti-Inflamatórios , Benzopiranos , NF-kappa B , Humanos , Anti-Inflamatórios/farmacologia , Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Benzopiranos/farmacologia
19.
Allergol. immunopatol ; 51(3): 135-142, 01 mayo 2023. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-219821

RESUMO

Purpose: To investigate the role of neferine in ovalbumin (OVA)-induced asthma, and to reveal the possible mechanism. Methods: In OVA-induced asthmatic mice, enzyme-linked-immunosorbent serologic assay was performed to evaluate the level of interleukin (IL)-4, IL-5, IL-13, immunoglobulin E (IgE) in serum and tumor necrosis factor-α (TNF-α), IL-6, IL-1β, and monocyte chemoattractant protein-1 (MCP-1) in bronchoalveolar lavage fluid (BALF). Eosinophil, neutrophil, and lymphocyte counts in BALF were calculated to assess inflammation. The pulmonary function was measured by airway resistance, peak expiratory flow (PEF) and forced expiratory volume/forced vital capacity (FEV0.4/FVC) ratio, and respiratory rate. Hematoxylin and eosin staining and Masson staining were used to evaluate lung injury. Further, Western blot analysis was conducted to detect phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 of mitogen-activated protein kinase (MAPK) signaling pathways. Results: Neferine, 20 mg/kg or 40 mg/kg, could significantly decrease the levels of IL-4, IL-5, IL-13, and IgE in OVA-induced serum, and that of TNF-α, IL-6, IL-1β, and MCP-1 in OVA-induced BALF. Moreover, neferine could significantly decline eosinophil, neutrophil, and lymphocyte counts in BALF. Neferine contributed to improve OVA-induced airway resistance, promoted the value of PEF and FEV0.4/FVC ratio, and recovered the respiratory rate. It also reduced mucus secretion, distribution of inflammatory and goblet cells around bronchi, and attenuated collagen deposition in lung tissues. Furthermore, neferine reduced the phosphorylation of p38, JNK, and ERK to inhibit MAPK signaling pathways. Conclusion: Neferine relieves asthma-induced inflammatory reaction, airway resistance, and lung injury by inhibiting MAPK signaling pathways. This could serve neferine as a novel therapeutic candidate for treating asthma (AU)


Assuntos
Animais , Feminino , Camundongos , Ovalbumina/farmacologia , Asma/induzido quimicamente , Asma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Ensaio de Imunoadsorção Enzimática , Western Blotting , Transdução de Sinais
20.
Front Endocrinol (Lausanne) ; 14: 1063916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065743

RESUMO

Lately, nickel oxide nanoparticles (NiO NPs) have been employed in different industrial and biomedical fields. Several studies have reported that NiO NPs may affect the development of reproductive organs inducing oxidative stress and, resulting in male infertility. We investigated the in vitro effects of NiO NPs on porcine pre-pubertal Sertoli cells (SCs) which undergone acute (24 h) and chronic (from 1 up to 3 weeks) exposure at two subtoxic doses of NiO NPs of 1 µg/ml and 5 µg/ml. After NiO NPs exposure we performed the following analysis: (a) SCs morphological analysis (Light Microscopy); (b) ROS production and oxidative DNA damage, gene expression of antioxidant enzymes (c) SCs functionality (AMH, inhibin B Real-time PCR analysis and ELISA test); (d) apoptosis (WB analysis); (e) pro-inflammatory cytokines (Real-time PCR analysis), and (f) MAPK kinase signaling pathway (WB analysis). We found that the SCs exposed to both subtoxic doses of NiO NPs didn't sustain substantial morphological changes. NiO NPs exposure, at each concentration, reported a marked increase of intracellular ROS at the third week of treatment and DNA damage at all exposure times. We demonstrated, un up-regulation of SOD and HO-1 gene expression, at both concentrations tested. The both subtoxic doses of NiO NPs detected a down-regulation of AMH and inhibin B gene expression and secreted proteins. Only the 5 µg/ml dose induced the activation of caspase-3 at the third week. At the two subtoxic doses of NiO NPs a clear pro-inflammatory response was resulted in an up-regulation of TNF-α and IL-6 in terms of mRNA. Finally, an increased phosphorylation ratio of p-ERK1/2, p-38 and p-AKT was observed up to the third week, at both concentrations. Our results show the negative impact of subtoxic doses NiO NPs chronic exposure on porcine SCs functionality and viability.


Assuntos
Infertilidade Masculina , Nanopartículas , Masculino , Animais , Suínos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células de Sertoli/metabolismo , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...